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a b s t r a c t

This paper presents the use of place/transition petri nets (PNs) for the recognition and evaluation of

complex multi-agent activities. The PNs were built automatically from the activity templates that are

routinely used by experts to encode domain-specific knowledge. The PNs were built in such a way that

they encoded the complex temporal relations between the individual activity actions. We extended the

original PN formalism to handle the propagation of evidence using net tokens. The evaluation of the

spatial and temporal properties of the actions was carried out using trajectory-based action detectors

and probabilistic models of the action durations. The presented approach was evaluated using several

examples of real basketball activities. The obtained experimental results suggest that this approach can

be used to determine the type of activity that a team has performed as well as the stage at which the

activity ended.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Understanding ‘‘What is going on in the video’’ has been one of
the main challenges of the video-analysis domain for more than a
decade [1]. The main reason for this is the complexity of natural
scenes. This is especially true in cases when more than one object
of interest or agent is present in the scene, as the analysis should
be able to interpret the different temporal, spatial and logical
relations among them. The main problem of such an analysis is
the substantial temporal and spatial variability in the way
different agents perform similar tasks. This, together with the
combinatorial complexity of multi-agent activities, is the main
reason why several well-known frameworks such as Bayesian
networks or hidden Markov models, which have proven to work
well in the case of the activity analysis of individuals, experience
problems in the case of complex multi-agent systems.

Our research goal is to develop a method for the automatic
trajectory-based analysis of multi-agent activities. In particular,
we focus on the recognition and evaluation of highly structured
activities that usually occur in the sport domain (e.g., organized
activities which are practiced in advance and have to be
performed according to some predetermined scenario) or video
surveillance (e.g., agent motion in highly secured facilities). To
perform such analysis we use petri nets (PNs) since they allow the
modeling of several sequential and concurrent events and their
temporal synchronization.

1.1. Related work

One of the main problems in the activity-recognition domain is
the correct interpretation and evaluation of the observed events.
Therefore, it is not surprising that an increasing amount of video-
analysis research is dedicated to these problems [2–5].

Several different stochastic and deterministic inference meth-
ods for addressing the problem of the trajectory-based semantics
of human behavior have been proposed over the past decade.
The stochastic approaches involve Bayesian networks, dynamic
Bayesian networks and their variations [6–9], hidden Markov
models [10,11], propagation networks (P-nets) [12,13], Gaussian
mixture models [14], and stochastic grammars [15]. For example,
Nair and Clarck [16] used hidden Markov models (HMMs) to
develop an automated visual surveillance system that detects
suspicious human activity in a scene. Johnson and Hogg [14] used
Gaussian mixture models to model and synthesize the stochastic
behavior of pedestrians. Li and Woodham [17] presented a system
for representing and reasoning about selected hockey plays based
on trajectory data, augmented with domain-specific knowledge,
such as forward/backward skating and puck possession. Intille
and Bobick [6] built models of football plays using belief networks
and temporal graphs. Shi et al. used propagation networks
(P-nets) [12,13] for the representation and recognition of
sequential activities that include parallel streams of actions.

One of the major drawbacks of the above methods is the use of
very complex models with a large number of parameters. Such
models are hard to build since they have to be learnt from a huge
amount of training data or demand a lot of manual work which
usually has to be done by the domain expert. This is a serious
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disadvantage in situations when only a few training examples can
be obtained. Another major drawback of these methods is the
modeling of concurrent actions, which usually occur in multi-
agent activities. In such cases, commonly used approaches, such
as HMMs and DBNs [6,7,9], fail to model precisely all these
combinations. A common solution to this problem is to use
several different sub-models to represent the temporal relations
[6] or to model the activity in a hierarchical manner [7]. However,
this again increases the complexity of the obtained activity model.
Considering these facts, we can conclude that stochastic frame-
works are the most suitable for simple activities whose structure
is known in advance and can be used when there is enough
training data. On the other hand, for more complex, high-level
activities, which include many temporal combinations of events,
deterministic inference seems to be more appropriate.

Petri nets [18–20] have been previously used for the recogni-
tion of highly structured events [1,21,22]. They have proven to be
particularly suited to the modeling of sequential and concurrent
events and their synchronization, handling multiple scenarios
using the same PN model, modeling the hierarchical structure of
activities, and modeling the deterministic and stochastic infer-
ence of event occurrences.

Castel et al. [1], Ghanem et al. [22] and Lavee et al. [21] used
PNs for the recognition and querying of events in surveillance
videos. Two different methodologies for scene modeling were
proposed which produce different classes of PN models—object

PN [1] or plan PN [22,21]. In the first case, the places represent the
states of the objects, the tokens represent the number of objects
and the transitions represent the state changes. In the latter case
the places represent the states of the activity, the tokens represent
its progress and the transitions represent the activity advance-
ment from one state to another.

1.2. Overview of our approach

This paper presents a method for the automatic evaluation of
complex activities that involve several agents and many different
actions. The main idea behind our approach is that it is possible to
automatically build the activity model using the expert knowl-
edge encoded in the activity template. Similar approaches have
previously been used in [21,22]; however, that work did not
address several key issues which we try to solve in our work:

� First, in the previously proposed methods the PNs were
constructed manually. In our work an automatic procedure
for building the PNs from activity templates is proposed. Such
templates can be used in various areas of computer vision (e.g.

video surveillance, traffic monitoring, sports analysis or
human–computer interaction) to encode different real-world
scenarios.

� Second, a procedure for the automatic learning of logical and
temporal relations among actions and a procedure for the
evaluation of these relations is developed.

� Third, the basic PN concept is extended to handle the
evaluation of activities by using the tokens as the carriers of
the information about the goodness of the observed activity.

The proposed approach is extensively tested on several real-
world examples obtained from the sport domain. In particular, the
focus was put on the analysis of a basketball game since, from the
analysis standpoint, basketball represents a very challenging
multi-agent environment. The main reason for this is the large
number of players involved; since in most cases all five players
of the same team are involved in the activity. Additionally, the
analysis becomes even more challenging when we consider that
these activities can be terminated at different stages of their
execution, as players change their tactics as soon as they get a
good chance to score.

The remainder of the paper is organized as follows: A short
introduction to the multi-agent activity structure is given in
Section 2. In Section 3, a short overview of the PN framework is
given. Next, the procedure for building the PN from an activity
template is presented and the learning of the network’s temporal
parameters from training samples is described. In Section 4 the
experimental setup and the obtained evaluation results are
presented. Finally, in Section 5 the results of the experiments
are discussed and the final conclusions are drawn.

2. The structure of multi-agent activities

An activity is composed of several elementary actions (e.g. in
basketball these actions are player motion, dribbling, passing,

shooting, screening, rebounding, team starting formation, etc.),
which have to be executed in a prescribed temporal order [23].
The idea behind our approach is that it is possible to establish the
overall score and the current stage of the observed activity by
evaluating how well these individual actions have been per-
formed and whether the elements were performed in the correct
temporal order.

Fig. 1 shows an example of the template for a simple basketball
activity called ‘‘double screen’’. This activity is composed of six
actions: four players’ moves (players’ movements along
predefined paths) and two screens (close contacts of two

O4_screen

O5_move
O4_move

O3_screen
5

4

3

1 2

Fig. 1. An example of the spatial (a) and temporal (b) relations of an organized offensive activity called ‘‘double screen’’.

M. Perše et al. / Pattern Recognition 43 (2010) 1491–15011492



ARTICLE IN PRESS

players, where one of the players is standing still). It can be
interpreted as follows:

� First, player 4 should move to the position of the screen.
� After player 4 has positioned himself in the position of the

screen, player 5 should run next to player 4 and use the screen.
At the same time, player 3 should position himself in the
position of the screen for player 4.

� Finally, after players 3 and 5 have moved to their new
positions, player 4 should move next to player 3 and use the
screen.

The above description contains all the information that is
relevant for the execution of this basketball activity.

3. Methods

This section presents the basic building blocks to encode,
interpret and evaluate the multi-agent activities. First, a short
introduction to the PN framework is given. Next, the methods for
modeling the temporal relations between the actions are
presented and the procedure for building the PN models
automatically from the obtained temporal relations is described.
Additionally, the methods for modeling the networks’ temporal
parameters and propagating the activity information along the
network are described. Finally, the domain-specific activity
detectors that were used in our work to evaluate the spatial
properties of individual actions are presented.

3.1. The petri net formalism

Formally, the basic place/transition PN can be described as a
five-tuple

PN¼ fP; T ; I;O;Mg; ð1Þ
and can be graphically represented by a directed bipartite graph
(Fig. 2) which includes two types of nodes: the places P, which are
drawn as circles, and the transitions T, which are drawn either as
bars or boxes [19].

In Eq. (1) P¼ fp1;p2; . . . ; png is a finite set of places,
T ¼ ft1; t2; . . . ; tmg is a finite set of transitions, I : ðP � TÞ-N is
the input arc function which can be represented by the input
matrix In�m. If there exists an arc with weight k that connects the
place pi to the transition tj, then Iðpi; tjÞ ¼ k, otherwise Iðpi; tjÞ ¼ 0.
O : ðP � TÞ-N is the output arc function, which can be repre-
sented by the output matrix On�m. If there exists an arc with
weight w that connects the transition tj to the place pk, then
Oðtj; pkÞ ¼w, otherwise Oðtj;pkÞ ¼ 0. M : P-N is the current

marking of the net and can be represented as a vector M1�n. M0

is the initial marking, which denotes the initial state of the net.
The functions I and O define the weights of the directed arcs.

Let the �tjDP denote the set of places that are the inputs to the
transitions tjAT. Then, the transition tj is enabled by a given
marking if, and only if, MðpiÞ4 ¼ Iðpi; tjÞ; 8piA�tj. An enabled
transition can fire and, as a result, remove the tokens (black dots
in Fig. 2) from the input places and create tokens in the output
places. In this case the new marking Mt of the net is calculated as

Mt ¼Mt-1þðO-IÞ � Et ; ð2Þ

where Mt-1 is the old marking and Et is the vector of
the transitions that fired. For further details readers are referred
to [19,20].

3.2. Temporal relations

Although the activity presented in Fig. 1 is a relatively simple
one, it contains several interdependent actions that should be
performed in a specific spatial configuration, either concurrently
or in a specific temporal order. These actions can be divided into
two groups. The first group contains actions which are performed
by a single player (e.g. player motion, shooting). The second group
consists of a set of actions that are performed by two or more
players (e.g. screening or starting player formation). However, to
keep the structure of the templates reasonably general and
simple, we describe both groups of actions in a form of single
player primitives or ball primitives (e.g. a motion of individual
players). To obtain the temporal profiles of multi-player actions
(e.g. screens), we perform simulation of those primitives, and
detect the time intervals of multi-player as well as single-player
actions using sport-specific detectors in a similar manner as we
detect those actions from the actual trajectory data. This way we
obtain the activity timeline (Fig. 3) that defines the actual time
intervals in which the actions should occur. Note that this process
may split one multi-player action into more actions. For example,
a screen action is encoded as the motion of the player that is
making the screen and the actual screen.

By observing the starting and ending times of the actions, we
can define whether the action has to be executed before, within or
simultaneously in accordance with the other actions from the
activity.

Place Token

Timed
transition

Immediate
transition

Fig. 2. An example of a petri net [20].
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Fig. 3. The timeline for the double screen activity. The lines represent the learned

temporal relations. Full lines represent relations before and dashed lines represent

relations within.
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3.3. Building the petri net model

Our automatic procedure for building PN models from activity
templates consists of two steps:

� First, the action chains [21], which represent individual actions
are constructed.

� Next, the obtained temporal constraints are integrated into the
PN activity model. In this way the action chains are linked
together by using the knowledge about the temporal relations
between elements.

Action chains represent the basic building blocks of the PN and
are used to model the individual actions. Following the previously
developed ontologies proposed by Ghanem et al. [22] and Lavee
et al. [21], we can encode an action as a three-node (Fig. 4a) or a
five-node chain (Fig. 4b).

In the first case (Fig. 4a) the actions are encoded as
instantaneous events where only the information about the
execution or non-execution of the action is obtained. On the
other hand, Lavee et al. [21] also encode the duration of the action
(Fig. 4b). In this case the starting and the ending points of each
action have to be observed. In our case this means that the
starting and ending points of relatively short actions have to be
observed. From the practical standpoint this is a major drawback,
since the analyzed data as well as the action detectors include
some degree of uncertainty [24]. Therefore, the obtained starting
and ending points may vary significantly from one activity to
another. As a consequence, the five-node action chains are not
very suitable for modeling short actions and, as a preliminary
study suggested, they perform worse in comparison with the
three-node chains. For this reason we model each action from the
activity timeline as instantaneous time fragments, represented as
a three-node chain where:

� The staring node (precondition place) represents the precondi-
tions that have to be met in order for the observed action to
begin.

� The final node (action occurred place) denotes that an action
has been observed.

� The middle node—a timed transition represents the logical
state of an action. It denotes whether an action was or was
not observed. When it fires, the token that represents the
state of the action moves from the precondition place to the

action-occurred place. The firing of the transition occurs after
the logical condition is fulfilled (i.e., the execution of the
action) or in the case when the time period allocated for the
execution of the action has expired. To test the logical
condition we use trajectory-based action detectors (see
Section 3.6). If the transition fires due to the expiration of
the allocated time, we assume that the action has not been
observed.

Once the action chains are created, they are automatically
connected into a network using the knowledge about the
temporal relations between the actions that were obtained from
the timeline (Fig. 3). For this purpose, purely logical, instanta-
neous split and join transitions (gray transitions in Fig. 5), are
added to the network. The logical transitions can model one or
several relations. The number of input and output arcs of the
logical transition depends on the type and the number of relations
among the actions that the individual logical transition
represents. For example, action ‘‘pl4 move’’ is in direct before

relation to the two other actions—‘‘pl4 move’’ and ‘‘pl5 move’’.
These two relations are modeled as one input and two output arcs
to the logical transition that connects the corresponding action
chains. Additionally, the second two actions are also in a within

relation with the screen action ‘‘pl4 screen for pl4’’. For this
reason, an extra output arc is added to the previously mentioned
logical transition. This way all the action chains are connected
such that the final PN model satisfies all the required PN
properties [18–20]. That is, they are connected in a way that
deadlocks and conflicts between the different action chains are
prevented and all the action chains are reachable from the initial
marking.

At the end of modeling procedure two additional dummy
nodes that represent the start and the end of an activity are
added. These dummy nodes are added just in case more activity
templates are used for the evaluation at the same time. Using
these nodes all the individual activity models can be connected
together into a single PN with many parallel single-activity
threads.

3.4. Learning the model temporal parameters

Transitions that are part of the action chains can fire for two
reasons. The first one is the change of the action state (the

actionpre condition
met

action ended actionpre condition
met

action endedaction occuring

Fig. 4. Different types of action chains used for modeling actions. (a) A three-node action chain. (b) A five-node action chain.

start of
activity pl 4 move

pl 4 screen
for 5

pl5 move

pl 3 move

pl 4 move

pl 3 screen for 4

end of
activity

1.33

1.13

0.0

Fig. 5. Petri net model automatically built from the double screen template. The black dots inside the places represent tokens that define the current state/marking of the

net. The numbers above the tokens represent the accumulated overall score of the particular activity that is analyzed. The black rectangles denote the observed actions, and

the white rectangles denote the actions that were not yet observed. The gray elements denote purely logical elements.
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observation of the action), and the second is the expiration of
the time allocated for its execution. In the second case the
time periods for the individual activities have to be known.
The simplest solution is to allocate an equal amount of time to
each individual action. A better solution is to obtain the overall
duration of the observed activity and then divide it in proportion
to the relative durations of the actions according to the activity
template.

In cases when at least some training samples can be obtained,
the actions’ temporal durations can be automatically derived from
these samples. For this purpose, the training samples can be
analyzed using the PN model with the temporal durations set to
very high values (e.g., 150 frames). In this way the times
when individual transitions are fired can be observed. Then a
probabilistic distribution function (pdf) can be fitted onto the
obtained data in order to model the temporal distribution and to
derive the temporal distribution model of each action (see the
examples in Fig. 6). In our case a Gaussian pdf is used to
determine the expected action durations ðmÞ and the upper limits,
which are defined as Tj

max ¼ mjþsj. Note that other pdfs could be
used for the modeling (e.g., the Gamma distribution function);
however, due to the small number of training samples and the
better spread over all the test data, the Gaussian pdf provided
the best results.

3.5. The evaluation scheme

The original PN framework has evolved into several different
high-level formalisms, among which the most widely used are
colored petri nets and generalized stochastic petri nets. We
followed the idea of the colored PN framework [18], where the
tokens are used as carriers of information. Usually, tokens carry
the information about the properties of objects that are part of the
modeled system (e.g., color of a car or the type of installed
engine). In our implementation, however, the tokens are used to
carry information about the overall goodness of the analyzed
activity. In terms of the colored petri net terminology a single
color set of the type real is used [18]. The attached data value is
called the activity score. The tokens collect the information about
the individual action scores, which are defined as the product of
the spatial ðSjÞ and the temporal ðTjÞ goodness. The activity score is
updated every time a transition fires and is calculated as

Xi
new ¼ Xi

oldþSj � Tj; ð3Þ

where Sj is the maximum detector response for the action j, Tj is
the temporal goodness of the transition j and Xi

old is the previous
score of the token i that is passing through the transition j.
The temporal goodness Tj is obtained from the temporal pdf

Fig. 6. Gaussian probability density functions for four different actions. The green dots represent the temporal durations of 10 training samples. The red vertical line

represents the maximum action duration. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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(Section 3.4) and is defined as

Tj ¼
e-m

2
j
=2�s2

j ; tjo0;

e-ðmj-tjÞ2=2�s2
j ; 0otjoTj

max;

0; tj4Tj
max;

8>>><
>>>:

ð4Þ

where tj is the period in which the transition jwas enabled, mj and
sj are the mean and standard deviation of the Gaussian pdf for the
action j, and the parameter Tj

max is the maximum time limit of this
action.

The logical join and the logical split transitions are used to
propagate and collect the token information. When n concurrent
tokens ðXi

oldÞ join into a single token ðXiþ1
new Þ the new token score is

calculated as the sum of the scores of all the incoming tokens

Xiþ1
new ¼

Xn
i ¼ 1

Xi
old: ð5Þ

In the case of a logical split transition, the accumulated score is
transferred to one of the newly created tokens. To be able to
compare the results from the different templates, the final score
obtained at the end node is normalized with the number of action
chains in the activity thread.

3.6. Evaluating the spatial properties of the actions

Once the PN model is built, it can be used for an evaluation of
the activity performance. In order to do that we have to devise a
mechanism that will transform the raw trajectories into mean-
ingful information about the spatial characteristics of the
analyzed action. For this purpose we describe different basketball
actions (e.g., dribbling, passing, shooting, player motion, and

screening) using very generic detectors that involve a single
player or a collaboration of two players:

� Screen. In the basketball literature, the screen is defined as a
close contact between two players [23], where ideally one
player is standing still and the other runs in his near proximity.
Thus a certain interaction among two players is more likely to
be interpreted as a screen if the velocity of the slower player is
very low and the distance between the players is small.
Let dt be the Euclidian ðl2Þ distance between the two
interacting players and let vt be the velocity of the slower
player. The likelihood function of a screen is defined as

Lðscreenjdt ; vtÞ9N ðdt;0;sdÞ �N ðvt;0;svÞ; ð6Þ
where N ð�;0;sÞ is a zero-mean Gaussian function with
variance s2. The quality of the screen is defined as the

likelihood ratio

Sscreen9
Lðscreenjdt ; vtÞ
Lðscreenj0;0Þ ; ð7Þ

where Lðscreenjdt ; vtÞ is the likelihood of the screen given the
current distance and velocity values ðdt ; vtÞ of the interacting
players and Lðscreenj0;0Þ is the likelihood of an ideal screen.
To obtain the values of the detector parameters, we relied on
an extensive study on accuracy of the player tracking [24,25].
Examining the published results, we decided to set the
proximity parameter sd in Eq. (6) to sd = 1 m and the velocity
parameter sv, which determines the velocity of the player that
is ‘‘still enough’’, to sv ¼ 0:5m=s.

� Player move. In the activity template, a player move is defined
as the exact path that a player should follow. The path is
defined by one or more line segments, where each line
segment has a starting point ðAiÞ and an ending point ðBiÞ.
Thus, the quality of the player’s move is defined as a product of
the distance function from the ideal path N ðdt;0;sdÞ and the
path ratio fpathðtÞ
SmoveðtÞ9N ðdt;0;sdÞ � fpathðtÞ: ð8Þ
dt in Eq. (8) denotes the l2 distance between the player and
the closest point on the path (perpendicular distance) and the
function fpathðtÞ determines the ratio between the path that the
player has covered up to time t and the total length of the path

fpathðtÞ ¼
PM

i ¼ 1

Pt
j ¼ 1ðDxj

!� AiBi

��!Þ
PM

i ¼ 1 JAiBi

��!
J

; ð9Þ

where M is the number of line segments, JAiBi

��!
J is the length of

the path segment i and
Pt

j ¼ 1ðDxj
!� AiBi

��!Þ defines the sum of the
scalar products of the current player’s motion vector Dxj

!
and

the ideal motion vector of the i th segment AiBi

��!
.

� Ball pass. A pass of the ball is defined as a motion of the ball
along a straight line. For this reason it can be regarded in the
same way as the motion of a player and therefore the same
motion detector that is used to detect the player move can be
used to detect and evaluate the ball pass.

Fig. 7 illustrates an example of the detector response obtained for
a player motion action.

4. Experiments and results

To test the performance of our PN-based activity-analysis
procedure, several test videos were recorded. To record the
basketball plays two cameras, fixed to the ceiling of the sports
hall, were used. An image from one of the cameras is shown in
Fig. 8.

0 20 40 60 80 100 120 140
0

0.5

1

time

de
te

ct
or
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se

Fig. 7. An example of a detector response for player motion. (a) Player motion on the court. The thick black line represents the player trajectory and the thinner straight red

line represents the optimal player path. (b) Detector response for the predefined motion. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)
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The tracking scheme which is based on the color-based particle
filter [26,27] that was used to obtain the data is designed so that it
does not allow the tracking of the online streaming input videos.
The reason for this is that during the tracing several failures can

occur due to the frequent player collisions (we estimated that up
three tracking mistakes per player can occur in basketball and up
to 11 in handball during the entire course of a match [26]). For
this reason, an operator supervised the tracking and corrected any
errors that appeared during the tracking process. The tracking was
coupled with the appropriate calibration, which made it possible
to map the image coordinates to the real-world (court) coordi-
nates and to compensate for the radial distortion that is present in
the original video data [28]. At the end of the tracking the data
were smoothed using a 25-samples-wide symmetric Gaussian
filter kernel, which proved to be the most suitable for reducing
the tracking jitter and for retaining the measurement accuracy
[29,24].

The evaluation procedure described in the article represents
only the last step of a three-step ‘‘top-down’’ analysis process. The
entire process involves (a) segmentation, (b) recognition and (c)
evaluation. The methods for segmentation and recognition have
been published already in [30]. Nevertheless, in this work we have
manually segmented the video streams to produce input
sequences for PNs. The main reason for that was that the test
sequences used were not recorded during an actual basketball
game but during a training session, which allowed us to analyze
the execution of the activity in several repetitions, under
controlled and documented conditions (e.g. with and without
defense team). Additionally, manual segmentation allowed us to
test the performance of the proposed method in isolation from

pl5-passpl5-dribble

pl1-pass

pl2-move

pl1-move pl1-move

start end

2.6

pl1-move pl1-screen

pl4-move

pl5-movepl5-movepl5-move

pl4-screenpl4-move pl4-move

pl3-screenpl3-move

pl2-move

pl3-move

pl2-screen pl2-move

3.1

0.1

0.55

start end

Fig. 9. Two examples of the PNs used in the evaluation procedure. The darker (red) transitions represent the already observed actions. (a) PN model for the ‘‘Slovan1’’

template. (b) PN model for the ‘‘flex’’ template. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 8. Operator-supervised tracking in progress.
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other factors, such as tracking or segmentation errors, which
would inevitably propagate into the final evaluation results.

In this way, two sets of test data were acquired. The first set
was composed of 61 examples of three different basketball
offensive plays. There were 20 cases of offense called ‘‘52’’. From
these, nine cases were performed without any defense and 11
cases were performed against the defense. The next 22 cases
belonged to the ‘‘flex’’ offence: 11 cases were performed without,
and 11 against the defense. The last 19 cases belonged to the
‘‘motion’’ offense. From these, 12 were played without, and seven
against the defense.

In the second set there were 40 repetitions of a single offense:
however, they were performed in such a manner that they ended
in different stages of execution. The first 10 examples (Slovan1
activity) ended shortly after the start of the activity and the last
10 (Slovan4 activity) were completed. Each time, five offenses
were performed without the defense and the other five were
performed against the defense.

Since the evaluation procedure requires that the roles of the
players are known (i.e., we have to know which trajectory
represents which player role in the template), the players were
cast into their respective roles using the methods described in
[30]. The experiments were carried out on a modified version of
the PN framework presented in [31].

In order to ensure the correctness of the obtained results we
always removed the tested sample from the training set that was
used to learn the temporal distributions of the individual actions.

The main goal of the experiment was to determine whether
the team activity was performed according to the activity
template. Additionally, we wanted to establish if it is possible to
correctly determine the stage at which the activity ended. To do
that, the PN model for all the templates representing the analyzed
activities (Slovan1–Slovan4, 52, flex and motion), was built. Two
examples of the obtained PN models are presented in Fig. 9.

Table 1 shows the average score for the class of activities
belonging to the same type and stage of execution. The videos
demonstrating the results of the evaluation procedure are
available online at [32].

It is clear from Table 1 that the best scores were obtained in
cases when both the type and the stage of the template and the
observed activity matched. Furthermore, we can see that even
when the stages of the template and the activity mismatched, the
obtained score is higher in cases when the type of activity and
template matched. This would suggest that the proposed method
is very robust even in cases when the activity was concluded too
early or too late. Additionally, the results suggest that by using
several templates of different lengths it is usually possible to
determine the correct stage of the observed activity since the
scores are lower in cases when the difference in stages is higher.

Fig. 10 presents the results of all the activities from the second set
of test data when they were analyzed using the longest (Slovan4)
template. Here we can see how the results improve as the
difference between the stages of the activity and the template
becomes smaller.

Fig. 11 shows the evaluation results of the individual activities
when different templates are used for the evaluation. Here we can
observe that even though the players performed the entire offense
they in most cases obtained lower scores when only the first part
of the offense was observed. The main reason for this is that when
the players perform a longer offense, the spatial and the temporal
characteristics of this offense change in comparison with the
shorter ones. In addition, we can observe that the scores of the
offenses that were performed without any defense are slightly
higher than the scores of the offenses that were disrupted by the
defense. The main reason for this is that the temporal profile, as
well as the path of the players’ motion, changes when the defense
is present. The reason for this is that the defense disrupts the
optimal flow of the activity and as a consequence offensive
players also adjust their behavior toward the defensive team.
From this, we could conclude that the proposed framework allows
some reasonable deviation in the player motion if the value
of standard deviation is set correctly (e.g. more than 0.3m).
However, if we wanted to penalize motion deviations more
rigorously, we could simply lower the values of the standard
deviations. This would additionally differentiate the scores of the
two types of activities.

Table 1
Average activity scores when evaluating activities using PNs built from activity templates of different types.

Class of templates Class of actions

52 Flex Motion Slovan1 Slovan2 Slovan3 Slovan4

w7s w7s w7s w7s w7s w7s w7s

52 0:5570:11 0:1570:09 0:1770:07 0:0970:03 0:1070:02 0:1870:04 0:1670:04

Flex 0:2270:06 0:3370:09 0:1870:09 0:0370:02 0:0570:01 0:1470:04 0:2470:05

Motion 0:1570:04 0:2070:06 0:4070:12 0:0670:02 0:0470:02 0:1670:04 0:1370:06

Slovan1 0:1370:05 0:0470:05 0:0370:05 0:7870:12 0:5170:09 0:4470:17 0:5170:16

Slovan2 0:0570:05 0:0570:07 0:1470:09 0:5170:07 0:5770:05 0:5070:12 0:5270:13

Slovan3 0:1070:06 0:1370:07 0:1670:07 0:3270:05 0:3270:03 0:6070:07 0:5570:08

Slovan4 0:1270:03 0:1570:05 0:1870:04 0:2070:03 0:2070:02 0:4870:08 0:6070:04

The highest average score is displayed in bold.
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Fig. 10. Evaluation results for individual activities when analyzed using the

‘‘Slovan4’’ template. The text on the graph denotes the type of analyzed activity.
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Fig. 11. Evaluation results for individual activities. The names above the graphs denote the type of analyzed activity. The results of the evaluations where the type of

activity and the type of template matched are displayed in bold. Individual results can be obtained at [32].
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5. Conclusions and future work

An approach to the automatic evaluation of complex, multi-
agent activities with petri nets was presented. The PNs were built
automatically from the activity templates. The building process
was composed of two stages. In the first stage, three-node chains
(two places and one transition) were built for each action. In the
second stage, the action chains were connected together so that
they encode the complex temporal relations between the actions.
After the model was built, the temporal durations of the actions
were learnt from training data. The strong point of our approach is
that it allows learning from only a small amount of training data.
In order to evaluate how well the individual actions were
performed, trajectory-based action detectors were applied to
each transition that represented an action. To obtain the knowl-
edge about the overall activity, a method that allows the
propagation of information about activity performance was
developed.

Several experiments were performed to evaluate the proposed
approach. They were carried out on two sets of trajectory data
obtained from two different sets of basketball activities. In total
101 test examples were used for the testing. The obtained
experimental results suggest that the presented method can be
used to determine the type of activity the team has performed as
well as the stage at which the activity ended. The method has
proven to be robust, even in cases when the activity ended too
early or too late.

Our future work will focus on applying the presented approach
to other domains, such as high-security video surveillance, where
the proposed approach could be used to observe the unusual
behavior of people. Additionally, the evaluation procedure could
be refined by taking into account the information about the
importance of individual actions, and the allowed deviation in
player paths (expressed by the standard deviations in individual
action detectors). This information is already contained in the
activity templates, however, as it turned out, sport experts had
difficulties in choosing an ‘‘appropriate’’ parameter value. Never-
theless, the parameter value is application specific and further
studies are needed to enlighten the parameter setting from this
perspective as well.
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